Gemma 3-1B Tutorial - Google Colab¶
Complete tutorial for running Gemma 3-1B with llcuda v2.1.0 on Tesla T4 GPU.
Open in Google Colab¶
What This Tutorial Covers¶
This comprehensive 14-step tutorial demonstrates:
- GPU Verification - Detect Tesla T4 and check compatibility
- Installation - Install llcuda v2.1.0 from GitHub
- Binary Download - Auto-download CUDA binaries (~266 MB)
- GPU Compatibility - Verify llcuda can use the GPU
- Model Loading - Load Gemma 3-1B-IT from Unsloth HuggingFace
- First Inference - Run general knowledge queries
- Code Generation - Test Python code generation
- Batch Inference - Process multiple prompts efficiently
- Performance Metrics - Analyze throughput and latency
- Advanced Parameters - Explore generation strategies
- Model Loading Methods - HuggingFace, Registry, Local paths
- Unsloth Workflow - Fine-tuning to deployment pipeline
- Context Manager - Auto-cleanup resources
- Available Models - Browse Unsloth GGUF models
Verified Performance¶
Real execution results from Google Colab Tesla T4:
- Speed: 134 tokens/sec average (range: 116-142 tok/s)
- Latency: 690ms median
- Consistency: Stable performance across all tests
- GPU Offload: 99 layers fully on GPU
3x Faster Than Expected!
Initial estimates: ~45 tok/s Actual performance: 134 tok/s FlashAttention + Tensor Cores delivering exceptional results!
Tutorial Steps¶
Step 1: Verify Tesla T4 GPU¶
!nvidia-smi --query-gpu=name,compute_cap,memory.total --format=csv
# Expected output:
# Tesla T4, 7.5, 15360 MiB
Step 2: Install llcuda v2.1.0¶
!pip install -q git+https://github.com/waqasm86/llcuda.git
# ✅ llcuda v2.1.0 installed successfully!
Step 3: Import and Download Binaries¶
import llcuda
# First import triggers binary download:
# - Source: GitHub Releases v2.0.6
# - Size: 266 MB
# - Duration: ~1-2 minutes
# - Cached for future use
Download Output:
📥 Downloading from GitHub releases...
URL: https://github.com/waqasm86/llcuda/releases/download/v2.0.6/...
Downloading T4 binaries: 100% (266.0/266.0 MB)
✅ Extraction complete!
Copied 5 binaries to .../llcuda/binaries/cuda12
Copied 18 libraries to .../llcuda/lib
Step 4: Load Gemma 3-1B-IT¶
engine = llcuda.InferenceEngine()
engine.load_model(
"unsloth/gemma-3-1b-it-GGUF:gemma-3-1b-it-Q4_K_M.gguf",
silent=True
)
# Auto-configured for Tesla T4:
# - GPU Layers: 99 (full offload)
# - Context Size: 4096 tokens
# - Batch Size: 2048
Step 5: Run Inference¶
result = engine.infer(
"Explain quantum computing in simple terms",
max_tokens=200,
temperature=0.7
)
print(result.text)
print(f"Speed: {result.tokens_per_sec:.1f} tok/s")
# Actual output: 131.4 tokens/sec ✅
Step 6: Batch Processing¶
prompts = [
"What is machine learning?",
"Explain neural networks briefly.",
"What is the difference between AI and ML?",
"Define deep learning concisely."
]
results = engine.batch_infer(prompts, max_tokens=80)
for prompt, result in zip(prompts, results):
print(f"Q: {prompt}")
print(f"A: {result.text}")
print(f"Speed: {result.tokens_per_sec:.1f} tok/s\n")
# Results:
# Query 1: 116.0 tok/s
# Query 2: 142.3 tok/s
# Query 3: 141.6 tok/s
# Query 4: 141.7 tok/s
Performance Results¶
From the executed notebook:
| Test | Tokens | Speed | Latency |
|---|---|---|---|
| General Knowledge | 200 | 131.4 tok/s | 1522ms |
| Code Generation | 300 | 136.1 tok/s | - |
| Batch Query 1 | 80 | 116.0 tok/s | 690ms |
| Batch Query 2 | 80 | 142.3 tok/s | 562ms |
| Batch Query 3 | 80 | 141.6 tok/s | 565ms |
| Batch Query 4 | 80 | 141.7 tok/s | 565ms |
| Average | - | 134.2 tok/s | 690ms median |
Why So Fast?
- FlashAttention - 2-3x speedup for attention operations
- Tensor Cores - SM 7.5 fully utilized
- CUDA Graphs - Reduced kernel launch overhead
- Full GPU Offload - All 99 layers on GPU
- Q4_K_M Quantization - Optimal speed/quality balance
Model Information¶
Gemma 3-1B-IT Q4_K_M:
- Size: ~806 MB (download)
- Parameters: 1 billion
- Quantization: Q4_K_M (4-bit)
- Context: 2048 tokens (expandable to 4096)
- VRAM: ~1.2 GB
- Source: unsloth/gemma-3-1b-it-GGUF
Jupyter Notebook Features¶
The notebook includes:
✅ Complete Setup Guide - Step-by-step installation ✅ GPU Verification - Ensure you have Tesla T4 ✅ Error Handling - Helpful troubleshooting tips ✅ Multiple Examples - Chat, batch, creative generation ✅ Performance Metrics - Detailed throughput & latency ✅ Unsloth Workflow - Fine-tuning to deployment ✅ Model Catalog - List of available Unsloth models
Related Resources¶
- Executed Notebook - See live output with all results
- Performance Benchmarks - Detailed T4 analysis
- API Reference - InferenceEngine documentation
- Unsloth Integration - Complete workflow guide
Common Questions¶
How long does the first run take?¶
- Binary download: 1-2 minutes (266 MB)
- Model download: 2-3 minutes (~800 MB)
- Model loading: 10-20 seconds
- First inference: Same speed as subsequent runs
Total first-time setup: ~5 minutes Subsequent sessions: Instant (cached binaries and models)
Can I use different models?¶
Yes! The notebook works with any GGUF model from HuggingFace:
# Llama 3.2-3B
engine.load_model(
"unsloth/Llama-3.2-3B-Instruct-GGUF:Llama-3.2-3B-Instruct-Q4_K_M.gguf"
)
# Qwen 2.5-7B
engine.load_model(
"unsloth/Qwen2.5-7B-Instruct-GGUF:Qwen2.5-7B-Instruct-Q4_K_M.gguf"
)
What if I don't have T4?¶
llcuda v2.1.0 is optimized for Tesla T4. Other GPUs may work but performance will vary. The binaries are compiled for SM 7.5 (T4's compute capability).
Get Started Now!¶
No GPU? No problem! Google Colab provides free Tesla T4 access.
Questions? Open an issue on GitHub