Skip to content

GPU 1 - Graphistry

Use GPU 1 for RAPIDS + Graphistry visualization.

Setup

import graphistry
import cudf

# Configure Graphistry for GPU 1
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'

# Register Graphistry
graphistry.register(
    api=3,
    protocol="https",
    server="hub.graphistry.com",
    personal_key_id="YOUR_KEY"
)

Workflow

  1. Extract from LLM (GPU 0)

    # Get entities from LLM
    entities = llm_client.extract_entities(text)
    

  2. Build Graph (GPU 1)

    # Create graph with cuDF
    nodes_df = cudf.DataFrame(entities)
    edges_df = cudf.DataFrame(relationships)
    

  3. Visualize (GPU 1)

    # Render with Graphistry
    g = graphistry.edges(edges_df).nodes(nodes_df)
    g.plot()
    

VRAM Usage

  • cuDF: 1-3 GB
  • cuGraph: 2-5 GB
  • Graphistry: 1-4 GB
  • Total: 4-12 GB on GPU 1