MultiGPU API¶
Multi-GPU configuration and utilities for dual T4 setup.
Overview¶
The multigpu module provides GPU detection and configuration for Kaggle dual T4.
Basic Usage¶
from llcuda.api.multigpu import detect_gpus, kaggle_t4_dual_config
# Detect GPUs
gpus = detect_gpus()
for gpu in gpus:
print(f"GPU {gpu.index}: {gpu.name}")
# Get Kaggle dual T4 configuration
config = kaggle_t4_dual_config(model_path="model.gguf")
Functions¶
detect_gpus()¶
kaggle_t4_dual_config()¶
def kaggle_t4_dual_config(
model_path: str,
tensor_split: str = "0.5,0.5"
) -> ServerConfig:
"""Get optimized config for Kaggle dual T4.
Args:
model_path: Path to GGUF model
tensor_split: GPU split ratio
Returns:
ServerConfig for dual T4
"""
estimate_model_vram()¶
def estimate_model_vram(
model_size_b: float,
quant_type: str = "Q4_K_M"
) -> float:
"""Estimate VRAM usage in GB.
Args:
model_size_b: Model size in billions
quant_type: Quantization type
Returns:
Estimated VRAM in GB
"""
Classes¶
GPUInfo¶
class GPUInfo:
index: int
name: str
compute_capability: Tuple[int, int]
memory_total: int # bytes
memory_free: int # bytes